
Approaches to Analysis So Far



Comparing Marginal Models and Mixed Effects Models

I Marginal models are for population-level effects.

I Specify the overall average and variance.
I Accommodate associations through a correlation structure.

I Mixed effects models are for both population-level effects and individual-specific
effects.

I Specify the mean structure, including both fixed and random effects.
I Specify the underlying distribution (normal, for continuous data).
I Accommodate associations through random effects.

How might we be able to handle categorical data?
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Example . . .



Do You Remember Stochastic Processes?



Framing Longitudinal Data as a Stochastic Process

I Consider S = {1, 2, . . . } to be a suitable state space.

I At time t, we take Yt ∈ S to be the current state of the process.
I We let Ht = {Y0,Y1, . . . ,Yt−1} represent the History.
I We are interested in

P(Yt = `|Ht).

Can maybe exploit Markov chains?
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Markov Property

A stochastic process is an r th order Markov Chain if

P(Yt = `|Ht) = P(Yt = `|Yt−1, . . . ,Yt−r ).

A first-order Markov chain is thus characterized entirely by the transition probabilities,

p`m(t) = P(Yt = m|Ht) = P(Yt = m|Yt−1 = `),

and the initital probability distribution, πj = P(Y0 = j).

If the Markov chain is time homogenous then

p`m(t) = p`m(t ′) = p`m,

for all t 6= t ′.
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Transition Models for Longitudinal Data



First-Order Transition Model

If we ignore covariates, and consider a first order Markov model, with equally spaced
observations, then the parameters of interest will be

p`m(tj) = P(Yij = m|Yi ,j−1 = `).

The likelihood will take the form of

L(p) =
n∏

i=1
P(Yil)

k∏
j=2

P(Yij |Yi ,j−1) =
n∏

i=1
πYi1

k∏
j=2

pYi,j−1,Yi,j (tj).



Likelihood Estimators

Maximizing the likelihood function, results in estimators given by

p̂`,m(t) = {# ` → m transitions at tj}
{# of subjects in ` at tj−1}

.

If we make the time homogenous assumption we get

p̂`,m =
∑k

j=2{# ` → m transitions at tj}∑k
j=2{# of subjects in ` at tj−1}

.



But . . . variates?



Logistic Transition Models

Consider the first-order time-homogenous model, with binary data.

Define µC
ij = E [Yij |Yi ,j−1] = P(Yij = 1|Yi ,j−1) We can model this as

logit(µC
ij ) = α0 + α1yi ,j−1.

This is easily extended to a second-order time-homogenous model by simply taking

logit(µC
ij ) = α0 + α1yi ,j−1 + α2yi ,j−2.
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Logistic Transition Models, with Additional Covariates

If we are also interested in the impact of xij then consider that

logit(µC
ij ) = x ′ijβ + yi ,j−1x ′ijα,

allows for . . .

1. Transition probabilities to depend on whatever measured factors.

2. Transition probabilities to differ between Yi ,j−1 = 0 (defined by β) and Yi ,j−1 = 1
(defined by β + α).

3. Can be readily expanded to second-order (or higher) using additional terms!
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Estimating in Practice

We can write down the likelihood, under the assumption of an r th order Markov chain.
It requires conditional likelihood.

Using this approach standard logistic regression can be applied, with the correct
lagged terms!

This treats the first r observations (for each individual) as fixed.



Summary

I Marginal models and mixed effects models do not naturally handle categorical
data.

I Can pose a longitudinal process as a stochastic process with an appropriate
Markovian assumption.

I Can use standard likelihood theory to characterize the transition probabilities.
I Using (e.g.) logistic regression, variates can be accommodated for the estimation

procedure.
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